User Guide # **CD81 TRIFic™ Exosome Assay** Europium Time-Resolved Immunofluorescence assay for detection of exosome antigens Human CD81 Cat No EX103 # **Contents** | Storage | 3 | |--|---| | Product Components | 3 | | Equipment and materials required but not supplied with these reagents | 3 | | Introduction and Assay Principle | 4 | | General Note | 5 | | Reagent Preparation | 5 | | Technical Positive Control Preparation | 6 | | Procedure:
Using TRIFic™ for measurement of exosome specific antigens | 6 | | Technical Positive Control Example | 7 | #### **Storage** Store Technical Positive Control at -80°C immediately upon receipt. Store all other components at 4°C. The kit has a shelf life of at least three months from receipt. # **Product Components** | • | Streptavidin-coated 96-well Plate | 1 plate | |---|---|----------| | • | Technical Positive Control, 25 μg (100 $\mu g/ml$) in PBS | 1 vial | | • | Eu-labeled CD81 mAb; 2.75 μg (in 40 μl TSA buffer, 0.1% BSA) | 1 vial | | • | Biotinylated CD81 mAb; 22 μg (in 22 μl PBS 7.4 pH, 15 mM NaN ₃) | 1 vial | | | Note: The CD81 antibody used in this kit is human specific. | | | • | Assay Buffer, 22 ml | 1 bottle | | • | Europium Fluorescence Intensifier (EFI Solution), 11 ml | 1 bottle | | • | 25x Wash Buffer, 20 ml | 1 bottle | | • | User Guide | 1 сору | ### **Equipment and materials required but not supplied with these reagents** - Time-resolved fluorescence microplate reader - Automatic plate washer - Plate shaker - Pipettes for dispensing reagents - Multichannel micropipette reservoir - Distilled / MilliQ water - Phosphate Buffered Saline (PBS) # **TRIFic™ Exosome Assay Protocol** #### **Introduction and Assay Principle** In the TRIFic™ exosome assay, the same antibody is used for binding of target to the assay plate and for detection. The assay consists of a monoclonal antibody (labeled with biotin) bound to a streptavidin coated plate which captures protein present on the surface of exosomes (Figure 1). Subsequently, an identical monoclonal antibody (labeled with Europium) is used for detection. Because the capture and detection antibody are identical, they require two linked copies of the same epitope for a signal to be detected. Exosomes provide an ideal structure to link CD81 molecules and allow detection of CD81 in this assay. Exosomes typically have multiple copies of CD81 facing towards the attachment surface and additional CD81 molecules available for detection. Any non specific binding of capture and detection antibodies is unlikely to generate a signal. Using a Europium fluorophore (see box) provides high levels of sensitivity for the assay, which is able to detect small changes in the abundance of the target CD81 protein even within unpurified complex biological samples, such as blood plasma and cerebral spinal fluid. **Fluorophores** are chemical substances that emit light following excitation by light or other electromagnetic radiation. The emission of light from a fluorophore is maximal immediately following excitation and decays over a period of time. Time resolved fluorimetry uses fluorophores which have long decay periods. For such fluorophores, measurement of emitted light can be performed when the excitation light is no longer present, thus increasing sensitivity. **Europium** is a fluorophore which produces an extended emission decay and has a wide Stokes shift with maximal excitation at 340 nm and peak emission at 615 nm. TRIFic™ assays are Time Resolved Immunofluorescence assays which utilize Europium and have been developed to measure the abundance of CD81 protein specifically associated with exosomes in biological fluids including urine, saliva, cell culture medium, cerebral spinal fluid and blood plasma. **Figure 1**. Schematic for $TRIFic^{TM}$ exosome assay. Step 1, Biotinylated antibody is bound to streptavidin coated assay plates. Step 2, Biological samples are added. Exosomes and any free antigen are captured by the antibody. Step 3, Europium labeled antibody is added and binds specifically to exosome antigen. The epitopes of bound monomers are already occupied and not detected. Samples are read in a time-resolved fluorescence plate reader. #### **General Note** The Technical Positive Control provided with the kit can be used to verify that adequate technical and handling procedures have been conducted and a signal can be detected at the end of the protocol. The provided Technical Positive Control cannot be used as a quantification curve for directly quantifying exosomes. Extracellular vesicles of different origin have different CD81 prevalence on their surface. #### Suggestion An internal quantification curve can be obtained for each population of exosomes studied by correlating CD81 TRIFic™ signal intensity with NTA measurements at different concentrations of purified exosomes. ## **Reagent Preparation** #### Preparation of the Wash Buffer Dilute the wash buffer concentrate 25x in MilliQ water (20 ml concentrate in 500 ml MilliQ water). The diluted solution may then be stored at room temperature. #### Preparation of the Biotin CD81 in Assay Buffer [Dilutions should be made on the day the assay is performed]. Briefly centrifuge the vial containing the antibody to gather all the liquid at the base of the vial. Prepare a ~ 2 ng/µl working solution of biotinylated Ab, by diluting 22 µl (22 µg) in 11 ml of assay buffer. #### Preparation of the Europium CD81 in Assay Buffer [Dilutions should be made on the day the assay is performed]. Briefly centrifuge the vial containing the antibody to gather all the liquid at the base of the vial. Prepare a ~ 0.25 ng/µl working solution of Eu-labeled CD81 mAb, by diluting 40 µl (2.75 µg) in 11 ml of assay buffer. #### **Technical Positive Control Preparation** - 1. 25 μg of exosomes, as determined by Bradford assay, have been purified from cell culture. The 25 μg of exosomes are provided in 250 μl PBS, at a total protein concentration of **100** $\mu g/ml$. - 2. Prepare 7 microcentrifuge tubes, each with 125 µl of PBS. - 3. Prepare dilutions as shown in the table below. Ensure that samples are properly mixed in each tube. **Table 1.** Positive control preparation. | Technical
Positive Control
| Exosomes | Diluted in PBS (μl) | Exosome
concentration
(125 µl solution) | |------------------------------------|-----------------------|---------------------|---| | 1 | 25 μg (in 250 μl PBS) | 250 | 100 μg/ml | | 2 | 125 µl of Tube #1 | 125 | 50 μg/ml | | 3 | 125 μl of Tube #2 | 125 | 25 μg/ml | | 4 | 125 μl of Tube #3 | 125 | 12.5 μg/ml | | 5 | 125 μl of Tube #4 | 125 | 6.3 μg/ml | | 6 | 125 μl of Tube #5 | 125 | 3.1 μg/ml | | 7 | 125 μl of Tube #6 | 125 | 1.6 μg/ml | | 8 | 125 μl of Tube #7 | 125 | 0.8 μg/ml | #### **Procedure** #### Coat the wells with CD81 capture antibody - 1. Add 100 μ l of the freshly prepared dilute solution (2 ng/ μ l) of biotin-CD81 antibody (prepared as described above) to each well. - 2. Incubate the plate for 1 hour at room temperature on a plate shaker at 750 RPM. - 3. Wash the plate using an automatic plate washer. Wash each well three times using 250 μ l wash buffer for each cycle. - 4. Remove the remaining wash buffer. # Add the sample - 5. Clear cells and cellular debris from test samples by centrifuging at 3,000 x g for 20 minutes. - 6. Transfer 100 μ l of the test sample supernatant to each well. Use 100 μ l of PBS instead of sample in order to generate a blank reading. - 7. Incubate the plate for 1 hour at room temperature on the plate shaker at 750 RPM. - 8. Wash the plate using an automatic plate washer. Wash each well three times using $250 \, \mu l$ wash buffer each time. - 9. Remove the remaining wash buffer. #### Add the Europium-labeled CD81 detection antibody - 10. Add 100 μ l per well of the freshly prepared Eu-labeled CD81 antibody dilution (prepared as described above). - 11. Incubate the plate for 1 hour at room temperature on the plate shaker at 750 RPM. - 12. Wash the plate using an automatic plate washer. Wash each well three times using 250 μ l wash buffer each time. - 13. Remove the remaining wash buffer. #### Signal enhancement and reading - 14. Add 100 µl of EFI solution to each well. - 15. Incubate the plate for 15 minutes at room temperature on the plate shaker at 750 RPM. - 16. Measure fluorescence on a time-resolved fluorescence microplate reader using an excitation wavelength of 340 nm and a measurement wavelength of 615 nm. Measurements should be performed in triplicate. Before taking the readings, make sure that the plate reader is set to read the fluorescence at the bottom of the plate, the integration time is set at 400 μ s and the lag time is set at 200 μ s. #### **Technical Positive Control Example** **Figure 2.** Example readings obtained using the CD81 TRIFic $^{\text{TM}}$ exosome assay with the provided technical control (exosomes purified from cell culture). Note the linearity of response over a wide range of concentrations. #### **Purchaser Notification** Limited warranty Cell Guidance Systems and/or its affiliate(s) warrant their products as set forth in the Terms of Sale found on the Cell Guidance Systems web site at http://www.cellgs.com/terms If you have any questions, please contact Cell Guidance Systems. This product incorporates licensed technologies. The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed. This product is for internal research purposes only and is not for use in commercial services of any kind, including, without limitation, reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact info@cellgs.com. CELL GUIDANCE SYSTEMS AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. TO THE EXTENT ALLOWED BY LAW, IN NO EVENT SHALL CELL GUIDANCE SYSTEMS AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF. ^{© 2018} Cell Guidance Systems. All rights reserved. The trademarks mentioned herein are the property of Cell Guidance Systems or their respective owners.